Learning Preferences for Multiclass Problems

نویسندگان

  • Fabio Aiolli
  • Alessandro Sperduti
چکیده

Many interesting multiclass problems can be cast in the general framework of label ranking defined on a given set of classes. The evaluation for such a ranking is generally given in terms of the number of violated order constraints between classes. In this paper, we propose the Preference Learning Model as a unifying framework to model and solve a large class of multiclass problems in a large margin perspective. In addition, an original kernel-based method is proposed and evaluated on a ranking dataset with state-of-the-art results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised learning as preference optimization

Learning with preferences is receiving more and more attention in the last few years. The goal in this setting is to learn based on qualitative or quantitative declared preferences between objects of a domain. In this paper we give a survey of a recent framework for supervised learning based on preference optimization. In fact, many of the broad set of supervised tasks can all be seen as partic...

متن کامل

On the Consistency of Output Code Based Learning Algorithms for Multiclass Learning Problems

A popular approach to solving multiclass learning problems is to reduce them to a set of binary classification problems through some output code matrix: the widely used one-vs-all and all-pairs methods, and the error-correcting output code methods of Dietterich and Bakiri (1995), can all be viewed as special cases of this approach. In this paper, we consider the question of statistical consiste...

متن کامل

On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines

In this paper we describe the algorithmic implementation of multiclass kernel-based vector machines. Our starting point is a generalized notion of the margin to multiclass problems. Using this notion we cast multiclass categorization problems as a constrained optimization problem with a quadratic objective function. Unlike most of previous approaches which typically decompose a multiclass probl...

متن کامل

Solving Multiclass Learning Problems viaError - Correcting Output

Multiclass learning problems involve nding a deenition for an unknown function f (x) whose range is a discrete set containing k > 2 values (i.e., k \classes"). The deenition is acquired by studying collections of training examples of the form hx i ; f (x i)i. Existing approaches to multiclass learning problems include direct application of multiclass algorithms such as the decision-tree algorit...

متن کامل

Solving Multiclass Learning Problems via Error-Correcting Output Codes

Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k > 2 values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hxi; f(xi)i. Existing approaches to multiclass learning problems include direct application of multiclass algorithms such as the decision-tree algorithms C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004